The Effects of Pore Fluid Pressure on the Frictional Behavior of Serpentinite: Implications for Slow Slip in Subduction Zones Ben Belzer - Department of Geology, University of Maryland - GEOL394 Advisors: Dr. Melodie French and Dr. Wenlu Zhu

Abstract

Slow slip events in subduction zones are constrained within regions of near-lithostatic (i.e. *very* high) pore fluid pressure¹. The role of high pore fluid pressure and its effects on frictional sliding processes may provide a link to understanding slow slip behavior. Using the hot-press triaxial deformation apparatus, I conduct a series of four friction tests on simulated fault gouge of antigorite serpentinite, a relevant lithology in subduction zones. Variations in frictional behavior and dilatancy of Verde Antique Serpentinite are documented at various pore fluid pressures and effective stresses to test the following:

Hypotheses

- (1) Low effective stress promotes frictional stability, and high effective stress promotes frictional instability.
- (2) Frictional stability is enhanced with elevations in pore fluid pressure and confining pressure, independent of effective stress.

- Velocity-strengthening = steady state friction increases w/sudden increase in slip rate (**Stable**)
- Velocity-weakening = steady state friction decreases w/sudden increase in slip rate (**Unstable**)

Sample and Procedure

- The Verde Antique Serpentinite is:
- Jacketed with three polyolefin jackets
- Crushed into fault gouge < 150 um
- Sandwiched between two driving blocks of porous sandstone
- Loaded into the hot-press

Hot-press apparatus

- Triaxial stress state
- Axial stress = σ_1
- Confining pressure = σ_3
- Normal stress σ_n and shear stress σ_s

ample ID	Confining Pressure (Mpa)	Pore	Effective	Measured	Number	Frictional behavior
		fluid	normal	friction	of	
		pressure	stress	coefficient	velocity	
		(Mpa)	(Mpa)	(σ_s/σ_n)	steps	
TG 7	75	5	70	0.594-	6	v-weakening
			70	0.659		
TG 8	65	55	10	0.723-	8	v-strengthening
				0.784		
TG 9	135	65	70	0.640-	6	V-
				0.687		weakening/strengthening
ГG 10	135	125	10	0.785-	8	v-strengthening
			10	0.874		

Microstructures

Fracture orientations and localized slip in deformed sample VTG 10

Experimental Results

Despite poor resolution of the signal, sample VTG 9 appears to dilate suddenly with high velocity-weakening and increased strain hardening. This may indicate dilatant hardening as an arresting mechanism of slow slip.

Conclusions

- Heterogeneities of fluid pressure within slow slip regions could control variations in slip activity:
 - Lower-fluid-pressure zones could increase potential for frictional instability on faults leading to non-volcanic tremor
 - Higher-fluid-pressure zones could stabilize slip
- Elevations in both fluid pressure and lithostatic stress with increasing depth could enhance fault stability, independent of (i.e. with no change in) effective stress
- Shear is accommodated by fracture orientations (R₁, P, Y) and localized slip along host-gouge contact

Suggestions for Future Work

- Document and analyze microstructures
- Determine better method of signal processing pore volume change measurements
- Measure critical slip distance D_c to obtain another useful constitutive frictional parameter
- Conduct similar experiments with added conditions (e.g. elevated temperature, variable fluid chemistry)

References

¹ Peng, Z. and J. Gomberg (2010), An integrated perspective of the continuum between earthquakes and slow-slip phenomena, *Nature Geoscience* **3**, 599 – 607