Locating the Westminster-Potomac Terrane Boundary in the Maryland
Piedmont Province

By: Jennifer Collins
29 April, 2011
Advisors: Dr. Aaron Martin, Dr. Phil Piccoli

Geology 394



Table of Contents

ADSIIACT. .. 1
INErOTUCTION. ... e e 1
Previous uranium-lead studies on the Piedmont....................ccoooeviiinnne. 2
GeOlOgIC SBIING. ... 4
Open and close of the Rheic and lapetus Oceans...................c.ceeeee 4
Significance of the Rheic Ocean...............ccooiiiiiiiiii i, 7
HYPOTNESIS. ... 7
Tests Of NYPOthesis. ... ... e, 7
MELNOAS. ... .o 7
Uranium-lead analysis...........oooiiiiiiii e, 9
Formations sampled. ... ... 10
RESUILS. . e, 13
DISCUSSION. ... ettt et et 19
CONCIUSION. ...t 20
ACKNOWIBAQEMENLS. ...t e 21
Appendix 1: U/Pb analyses from Aleinikoff etal., 2002.......................... 22

Appendix 2: Relative probability and concordia plots from Kingman 2009.... 25
Appendix 3: Relative probability and concordia plots from Fisher 2010........ 28

RO OGS . . . e 31



Abstract

The eastern part of the Piedmont Province consists of exotic terranes that rifted from
Gondwana during the close of the lapetus and Rheic Oceans. The Piedmont extends lengthwise
from Newfoundland to Georgia and from the Bull Run Mountain fault to the west, until the
Potomac Formation to the east, in the northeastern United States. Studies of foliations and
cleavages in rocks of the Piedmont Province have been conducted to locate and understand the
kinematics of the faults between the terranes within the province. Previous workers used isotopic
data from micas in Piedmont rocks to locate the Parrs Ridge fault, which is the newly defined
contact between the Westminster and Potomac terranes. Previously, this contact was accepted to
be the Pleasant Grove fault, located between the Mather Gorge and Marburg Formations. | have
studied four formations within the Piedmont by using petrographic analysis and U/Pb dating in
detrital zircons to increase the certainty of the location of the Parrs Ridge Fault, and its function
as a terrane boundary within the Piedmont.

Introduction

For over a century, geologists have been working toward understanding the formation of
the Appalachian mountain range and of the Piedmont Province. According to Dalla Salda et al.
(1992), the Appalachians may have extended through southern South America, but end abruptly
at the Gulf of Mexico coastal plain in Georgia. Dalla Salda observed that the Andes and
Appalachian mountain ranges are nearly parallel to one another (see figure 1), and contends that
the Andes and the Appalachians formed during the Taconic and Famatinian orogenies which
occurred along the east and west Laurentian margins, respectively. The eastern Laurentian
margin underwent multiple collisions by terranes which rifted from Gondwana. These collisions
are responsible for the formation of the Piedmont Province and the multiple generations of
foliation found within the province.

Within the Piedmont are the Westminster and Potomac terranes, located in central
Maryland. Historically, the contact between the Westminster and Potomac terranes was accepted
to be the Pleasant Grove fault, which separates the Mather Gorge Formation from the Marburg
Formation and the southernmost wedge of the Prettyboy Schist (see figure 1). Wintsch et al.
(2010) proposed that a fault within the Westminster terrane, named the Parrs Ridge fault,
separates the Westminster from the Potomac terrane. Wintsch used “°Ar/*Ar ages in white micas
in rock cleavages to locate this boundary. By observing changes in the microstructures and U/Pb
ages in detrital zircons of the formations in the northern region of the Maryland Piedmont, the
contact between the Westminster and Potomac terranes can be located with more confidence.
Studying the microstructures in all major minerals will give us a broad understanding of the
deformation during continental collision between Laurentia and the peri-Gondwanan terranes.
28/7%ph analysis in zircons differs from the study of “°Ar/**Ar closure temperatures in micas in
that the age of zircons will give us a firm constraint on the depositional age of rocks, while argon
closure temperatures will give us an understanding of the metamorphism in rocks. Both methods
are useful in understanding the tectonic history of the Piedmont. Understanding these collisions
helps to locate the thrust faults that they caused, including the boundary between the
Westminster and Potomac terranes within the Piedmont Province.



Fig. 1: Map of the northern region of Maryland. The Pleasant Grove fault represents the
previously accepted contact between the Potomac and Westminster terranes. Figure from
Southworth et al., 2007.

Previous U/Pb Studies on the Piedmont

Aleinikoff et al. used similar methods to those used in this study to determine the
maximum depositional age of Piedmont rocks in 2002. Zircons were analyzed by using the
sensitive high resolution ion microprobe (SHRIMP) and thermal ionization mass spectrometry
(TIMS). Aleinikoff used the U/Pb age of the zircons within plutonic and igneous bodies to
determine that they are parts of an extensive Early to Middle Ordovician magmatic arc (2002).
The Dale City Quartz Monzonite, Kensington Tonalite, and the Occoquan Granite are among
over ten formations studied.

Before Aleinikoff’s study, U/Pb ages of zircons within these igneous bodies were
determined by previous workers. The Kensington Tonalite was dated 546 Ma by Sinha, Hund,
and Hogan in 1989; the Occoquan Granite was dated 558 Ma by Seiders et al. in 1975; and the
Dale City Quartz Monzonite was dated 560 Ma, also by Seiders et al. in 1975; and (Aleinikoff,
2002). According to Aleinikoff, none of these ages are correct, thus he used the SHRIMP and
TIMS geochronology to determine more accurate ages for these bodies.



Fig. 2: Taconic orogen
(Appalachian
mountains) and
Famatinian orogen
(Andes mountains).
From Dalla Salda et
al. (1992).
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Aleinikoff separated zircons from the rocks by pulverization, magnetic, and dense
mineral separation with methylene iodide (2002). Zircons from the Dale City Quartz Monzonite
were analyzed by using TIMS geochronology and have a maximum age of 459+4 Ma. The
Kensington Tonalite was analyzed by both TIMS and SHRIMP analyses. TIMS data resulted in a
maximum age of 468+8 Ma. SHRIMP analysis yielded a wide range of ages; the weighted
average of 19 analyses resulted in an age of 463+8 Ma. The Occoquan Granite was analyzed by
SHRIMP geochronology, and was dated 472+4 Ma, which is inferred to be the time of
emplacement of the Occoquan Granite batholith (Aleinikoff, 2002). Detailed results of
Aleinikoff’s study can be found in Appendix 1. The intrusive rocks of the Maryland-D.C.-
Virginia Piedmont were deposited between 485 to 450 Ma (Aleinikoff, 2002). These zircon ages
represent the minimum ages for metamorphic bodies that were intruded by the granitoids
analyzed in Aleinikoff’s study; these units were determined to be Ordovician in age rather than
Cambrian, as previously accepted (Aleinikoff, 2002). Silurian and Devonian ages of intrusions
indicate Paleozoic tectonic events not previously recognized in rocks within the Central
Appalachians (Aleinikoff, 2002).



Gus Kingman conducted U/Pb analysis on detrital zircons of formations within the
Potomac terrane for his senior thesis in 2009. The formations sampled for this study are the
Laurel Formation, and within the Mather Gorge Formation, the Bear Island and Blockhouse
Point domains (Kingman, 2009). Detrital zircons were analyzed using the LA-MC-ICP-MS at
the University of Arizona to determine the ages of crystallization of the rock bodies previously
listed. Knowing the age of crystallization of the zircons help to place a maximum constraint on
the rocks of the Piedmont; this will help us to determine whether the relationships of these
formations have been placed properly in the Appalachian tectonic history (Kingman, 2009). The
maximum depositional age of zircons within the Laurel Formation is 520 Ma, interpreted from
probability distribution and concordia graphs. The Blockhouse Point domain was interpreted to
have a maximum depositional age of 960 Ma. Lastly, the Bear Island domain was interpreted to
have a maximum depositional age of 540 Ma. See Appendix 2 for graphs of analysis results.

Steven Fisher studied the north and south Sykesville formation as well as the Setters
Formation, all located in the Potomac terrane. By using U/Pb analysis, clast aspect ratios, and
thin section microtextural analysis, the age and source of the Sykesville formation was
determined (Fisher, 2010). Fisher also used the LA-MC-ICP-MS at the University of Arizona to
determine the age of crystallization of detrital zircons and thus a maximum depositional age of
the Sykesville and Setters Formations. The weighted averages of the zircons analyzed were taken
to interpret the maximum depositional ages of the formations sampled. A maximum depositional
age of 1000 Ma was determined for the Setters Formation. The maximum depositional age of the
north Sykesville Formation was interpreted to be 600 Ma. Lastly, the maximum depositional age
of the south Sykesville Formation was interpreted to be 1000 Ma. See Appendix 3 for graphs of
the analysis results.

Geologic Setting

Open and close of the lapetus and Rheic Oceans

The Piedmont Province extends from Newfoundland to Georgia in the southeastern
United States, and was formed by the open and close of the lapetus and Rheic oceans, as shown
in figure 3 (Hibbard, 2002). The lapetus Ocean was formed by the separation of landmasses that
had collided during the Grenville orogeny ca. 1.1-0.9 Ga, during the formation of Rodinia
(Cawood et al., 2001; Murphy et al., 2010). Data from rocks from the Laurentian margin suggest
that there was a multistage rift history in which separation from Baltica occurred between 620
and 570 Ma, and separation from West Gondwana occurred at 570 Ma (Cawood et al., 2001;
Cawood and Pisarevsky, 2006; Murphy et al., 2010). The Dashwood terrane, located in the
northern Appalachian mountain range, and the Precordillera in the southern Appalachians
formed microcontinents in the lapetus Ocean; according to Thomas and Astini (1999), separation
between the Precordillera and Laurentia occurred along asymmetric, low angle rifts with the
Precordillera on the lower plate (Murphy et al., 2010).

The lapetus Ocean began to subduct along the Laurentian and Gondwanan margins in the
Late Cambrian period, forming passive margins represented today by ophiolitic structures
displaying supra-subduction zone characteristics (Stephens, 1970; Williams and Stephens, 1974;
Williams, 1979; Jenner and Swinden, 1993; MacLachlan and Dunning, 1998; Bédard et al.,
1998; Bédard and Stevenson, 1999; Murphy et al., 2010). Subduction along the east Laurentian



margin brought about the Taconic orogeny, and along the west Gondwanan margin, subduction
caused the Penobscot orogeny (see figure 4). The lapetus was closed by the Carolinia, Ganderia,
and Avalonia terranes colliding with Baltica in the early Silurian and into Laurentia in the Late
Ordovician-Early Silurian (Chandler et al., 1987; Pickering et al., 1988; McKerrow and Scotese,
1990; Cawood et al., 1994; Keppie et al., 1996; Murphy et al., 1996; MacNiocaill et al., 1997,
van Staal et al., 1998, 2009; Hibbard, 2000; Hibbard et al., 2002; Murphy and Nance, 1991,
2002; Stampfli and Borel, 2002; Keppie et al., 2003; van Staal, 2007; Murphy et al., 2010).

JB. Murphy et dl. / Gondwana Research 17 (2010) 482-499
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The Rheic Ocean was formed when peri-Gondwanan terranes Avalonia, Carolinia, and
Ganderia, separated from the northern Gondwanan margin (Murphy et al., 2006; Nance and
Linneman, 2008; Nance et al., 2010; Murphy et al., 2010). The peri-Gondwanan terranes acted as
the boundary between the lapetus and Rheic Oceans after their separation from Gondwana
(Murphy et al., 2010). The opening of the Rheic Ocean also formed passive margins along
Gondwana and can be observed from igneous bodies such as the Acatlan complex in Mexico and
the Bohemian Massif in Eastern Europe, which could exhibit evidence of rifting and the
development of the Rheic Ocean (Murphy et al., 2009, 2010).

Northwest trending subduction in the Rheic Ocean began underneath the Laurentian
margin at 440 Ma and continued until 370 Ma, when continental collisions occurred (Martinez
Catalan et al., 1997; Murphy et al., 1999, 2010). Subduction in the Rheic Ocean is accepted to be
a response to the elimination of subduction zones in the lapetus Ocean following the accretion of



the peri-Gondwanan terranes to Laurentia (van Staal et al., 1998; Murphy et al., 2010). The
closure of the Rheic ocean is assigned to either the Acadian (Murphy and Keppie, 2005; Murphy
et al., 2010) or Neoacadian orogeny (van Staal, 2007; Murphy et al., 2010). Many aspects of the
closure of the Rheic Ocean are still unclear; for example, there is uncertainty whether Siluro-
Devonian tectonic activity is due to post-collisional separation and suturing of oceanic slabs
within the lapetus Ocean, or due to Andean-type subduction along the northern region of the
Rheic Ocean (Murphy et al., 2010). Also, geologists do not fully understand the systematic
northward migration of the onset of deformation across the entire Appalachian orogen from the
Late Silurian in the southeast to the Early Devonian to the northwest (Keppie, 1993; Robinson et
al., 1998; Murphy et al., 2010).

peri—Laurentian tract peri-Gondwanan tract
Early Cambrian (c. 525 Ma) microcontinent Late Cambrian (<. s00-490 Ma)
I
| Penobscot arc CGanderia
g T.e'm"a. f “T\Tumk SEmKEY :E et AN FSRBEOERE
S A 7 ettt
Late Cambrian (c. 500-490 Ma)
<TET; Pt
Tremadoc (¢. 490-481 Ma)
freiis ‘-)—V. /\.tr__ ~
Arenig (c. 480-471 Ma) Caradoc (¢. 460-450 Ma)
. . A ’ e
| SRR - “‘\\\1» e
—— = i -— i —
-~ '.‘-", Laurentian crust bl LU ?;Eea:d?ng .. ) peri-Gondwanan crust

——— - OCeANIC CrUST

Fig. 4: Tectonic models of the Taconic and Penobscot orogenies (Hibbard
et al., 2007; Murphy et al., 2010)

Significance of the Rheic Ocean

The Rheic Ocean opened in the Early Ordovician, as a result of the Avalonia, Ganderia,
and Carolinia terranes rifting from Gondwana. Murphy et al. (2006) suggested that the rifting
occurred along the line of a former Neoproterozoic suture (Nance et al., 2010). The Rheic Ocean
reached a width of about 4000 km before beginning to close in the Early Devonian. Its closure
was facilitated by northward subduction underneath the southern margin of Baltica in the



Variscan belt and by southward subduction underneath the northwestern margin of Gondwana in
the Appalachian-Ouachita belt where Laurentia was the lower plate (Hatcher, 1989; Viele and
Thomas, 1989; Nance et al., 2010). With the closure of the Rheic Ocean, ophiolites were
emplaced onto the southern margin of eastern Avalonia in southern Great Britain, and in
northwest and southern Iberia (Quesada et al., 1994; Nutman et al., 2001; Martinez et al., 2007;
Ribeiro et al., 2010; Nance et al., 2010). The closure of the Rheic Ocean may have been
accelerated by ridge subduction along its northern margin (Woodcock et al., 2007; Gutiérrez-
Alonso et al., 2008; Nance et al., 2010). The Rheic Ocean may be one of the most significant
ancient oceans because its closure caused Gondwana and Laurentia to collide and form the
supercontinent Pangaea; it also formed the Variscan-Alleghanian-Ouachita belt, which is the
largest collisional orogen of the Paleozoic (Nance et al., 2010).

Hypothesis

Before Wintsch’s study in 2010, the terrane boundary between the Westminster and
Potomac terranes was accepted to be the Pleasant Grove fault (see figure 1). Wintsch found that
the white micas in the rocks of these two terranes differed in age by 60 Ma by using the closure
temperatures of argon diffusion. Ages of the cleavages in rocks within the Westminster and
Potomac terranes were determined using “°Ar/*°Ar analysis of micas. In the western part of the
Westminster terrane, cleavages are Early Silurian in age; and in the eastern part of the
Westminster terrane and western Potomac terrane, cleavages are Late Devonian in age (Wintsch,
2010). From these cleavage domains, Wintsch proposed that the Parrs Ridge fault is the terrane
boundary between the Potomac and Westminster terranes. | hypothesize that detrital zircon U/Pb
age signatures and microstructural analyses will indicate that the Parrs Ridge fault is the
boundary between the Westminster and Potomac terranes.

Tests of hypothesis

| tested the hypothesis by studying thin sections of the four formations sampled and
observing any microstructural or compositional differences within them. Also, | analyzed detrital
zircons for U/Pb ages by using laser ablation multicollector inductively coupled plasma mass
spectrometry to observe differences in age signatures between the formations. Significant
dissimilarity in age signatures of zircons in samples collected in the field could suggest a terrane
boundary between these formations.

Methods

Samples were collected for detrital zircon analysis and thin section study. Samples
collected for thin sections were oriented in the field; that is, strike and dip were measured and
then recorded on the top surface of the rock taken from the outcrop. Rocks from the Prettyboy
Schist were crushed to a grain size of <400 um by using a steel mortar, pestle, and sieve. The
magnetic grains were then separated out of the sample by using the Frantz magnetic barrier
separator (see figure 5). The strength of the magnet increases with amperage, so this step was
repeated four times at increasing levels of amperage to remove as many magnetic grains as
possible.



Once the nonmagnetic grains are isolated, they are subjected to dense liquid separation,
by using methylene iodide (MEI). MEI has a density of approximately 3.30 g/cm?®, so zircon,
which has a density of approximately 4.65 g/cm?®, will sink to the bottom of the 100 mL beaker
used to perform this separation. All grains with densities less than that of zircon will float on the
surface of the MEI, and the zircon will be almost completely isolated. Ideally, by the end of this
step, the zircon grains will be completely isolated. However, we often find that lighter minerals
such as quartz or feldspar are attached to zircon grains, thus will sink to the bottom of the beaker
as well. Therefore, the dense liquid separation must be repeated, sometimes more than once. The
zircon grains are poured onto a piece of tape, and then mounted in an epoxy resin mixture, which
is left to cure for approximately 24 hours. The mount is polished until two thirds of the smallest
grains have been polished away. This is to ensure that the U/Pb ages that are recorded are of the
cores, which will record the age of crystallization of the mineral. The age of crystallization of the
zircons will help us in two ways. First, it will help us to determine the age signatures of the
zircons in each formation. Second, the age of crystallization constrains the maximum
depositional age of the zircons. If there is a significant difference in age signature or maximum
depositional age between the zircons within any of these formations, it is one indication of the
existence of a contact.

Fig. 5: Frantz magnetic barrier separator
located in the Chemistry Building.

Uranium-lead isotopic analysis

Isotopic analysis was conducted on detrital zircons by using the Laser Ablation
Multicollector Inductively Coupled Plasma Mass Spectrometer (LA-MC-ICP-MS) at the
University of Arizona in Tucson. For this study, the 233U/?%Pb decay series is used to determine



the ages of the zircons. Briefly, 28U decays to 2*Th via a-decay, which eventually decays to
2%%phy via - and B-decay (see figure 7). An uncertainty of 2.0c for 2°®Pb/*®*Pb is used for
common lead occurring in the sample. Accurately measuring *®Pb/?%Pb is important in order to
differentiate between common lead and isotopic lead, and to obtain more accurate U-Th-Pb ages

(Gehrels et al., 2006).
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Fig. 6: LA-MC-ICP-MS at Arizona LaserChron Center in Tucson, AZ. Figure from Gehrels et al.,

2006.

Detrital zircons are prepared in epoxy mounts with a diameter of 17 after they are
separated from the rock. Two hundred zircon grains are shot with the laser, and the vaporized
material travels via helium gas into the plasma in the MC-ICP-MS, and uranium, lead, and
thorium ratios are measured simultaneously in different chambers (Gehrels et al., 2006).
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Fractionation of Pb/U and Pb/Th occurs in the pit formed by the laser, which lowers the accuracy
of the readings. To correct for fractionation, fragments from a Sri Lanka zircon, aged 564+4 Ma
at 2o, are analyzed once every 5 unknowns (Gehrels et al., 2006).

Formations sampled

Samples were taken from three formations within the Westminster terrane and one
formation within the Potomac terrane, both located in the Piedmont province in northern
Maryland. The Piedmont is a portion of what was once the continent Laurentia. The thrust faults
that separate the Potomac terrane from the Westminster terrane were formed by the collision of
the Carolina terrane with Laurentia from the southwest over a west dipping subduction zone
(Wintsch et al., 2010).The Potomac terrane was thrust onto the Westminster terrane along the
Pleasant Grove fault; Westminster terrane was also thrust westward along the Martic fault. This
collision produced two cleavage domains in muscovites within the rocks of the Westminster
terrane; Early Silurian cleavage formed ~430 Myo to the east, and Late Devonian cleavage
formed ~370 Myo to the west (Wintsch et al., 2010).

The Mather Gorge Formation is located in the western part of the Potomac terrane (see
figure 1). It consists of metagraywackes and quartz-mica schists. A Barrovian sequence of
chlorite to sillimanite grade rocks has been observed from Culpeper basin phyllites to the Bear
Island domain migmatites (Kunk et al., 2004). Centimeter scale folding was observed in the
field, and the foliations dip to the west. The Mather Gorge Formation is divided into three
domains; from east to west they are: Blockhouse Point, Bear Island, and Stubble Falls (Kunk et
al., 2004). Samples were taken from the Blockhouse Point domain.

Within the Westminster terrane, the formations studied from east to west are the
Prettyboy Schist, Marburg Formation, and Sams Creek Formation. These units are stacked and
folded into overlapping thrust sheets that cut and divide these formations (Wintsch et al., 2010).
Foliations within all formations dip east to southeast. Rocks in the Westminster terrane have
experienced multiple metamorphic events under greenschist-grade conditions (Kunk et al., 2004;
Southworth et al., 2007). The Westminster terrane is the result of the rifting event that opened
the lapetus Ocean; it represents deepwater, post-rift deposits with no direct stratigraphic ties with
Laurentia (Kunk et al., 2004).

The Prettyboy Schist comprises quartz-muscovite-chlorite-albite schist and muscovite-
quartz-albite schist containing white, euhedral albite porphyroblasts and oxidized cubes of pyrite
(Southworth et al., 2007). Rocks in the Prettyboy formation are of a higher metamorphic grade
than those of the Marburg formation, therefore the contact between the two formations is an
isograd (Fisher, 1978; Southworth, 2007). The orientation of the main tectonic foliation of the
first station, located on Lisbon Center Drive in Woodbine, Maryland, is 215°, 72° SE. However,
this station was not sampled because there were too many quartz veins and the formation was not
well exposed. The second station, on Woodbine Morgan Road, was coarser grained, had better
exposure and a much smaller occurrence of quartz veins, so samples for detrital zircon dating
were taken. The orientation of tectonic foliation at this location is 22°, 77° SE.
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Fig. 8: Prettyboy Schist on Woodbine Morgan Road.

The Marburg Formation was sampled east and west of the Parrs Ridge Fault, the
boundary between the east and west Piedmont proposed by Wintsch et al. (2010). The formation
consists of phyllitic metasiltstone and small bodies of metagraywacke, metabasalt, and quartzite
(Southworth et al., 2007). Quartz veins <1 cm were observed throughout the Marburg Formation.
The orientation of foliation of the east Marburg Formation is 21°, 84° SE. The portion of the
west Marburg Formation located on Frederick Road in Clarksburg, Maryland is micaceous and
fine grained with some sandier patches. The foliation also dips to the southeast, but is slightly
shallower, with an orientation of 35°, 68° SE. The portion of the west Marburg Formation on
Barnes Road in Damascus, Maryland is coarser grained and folded. The orientation of foliation is
27°,81° SE.

Fig. 9: A) east Marburg
Fm.; B) west Marburg Fm.;
C) folding in west Marburg
Fm. on Barnes Road.
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The Sams Creek Formation comprises coarse grained quartz interbedded with phyllite
and an elongate orange-brown mineral to be identified in thin section (Southworth et al., 2007).
The rocks that make up Sams Creek Formation are felsic schist, metasiltstone, quartzite, and
eight other rock types as observed by Southworth et al. (2007). 1-5 cm thick quartz veins
crosscut foliation and the outcrop is poorly exposed on Arlington Mill Road in Libertytown,
Maryland. The orientation of foliation is 353°, 43° E.

Fig. 10: Sams Creek Fm. on Arlington Mill Road.

Results

After reviewing the zircon age populations of the formations sampled for this study as
well as for previous work, there appears to be a similar age signature for “Western-type”
formations and “Eastern-type” formations. Eastern-type formations, including the Mather Gorge,
Prettyboy Schist, and Marburg Formations (figures 11a, b, ¢, and d), exhibit high U/Pb age peaks
between 900 and 1600 Ma, with smaller peaks at 500-600 Ma, and at ~2000-3000 Ma. Western-
type formations, including the Sams Creek Formation (figures 11e), as well as the Urbana and
ljamsville Formations from previous studies, exhibit U/Pb age peaks between 800 and 1300 Ma,
with no zircons with older or younger ages.
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Figure 11: Relative probability and Concordia plots of the formations sampled in this study. In order
from east to west: a) Mather Gorge Fm., b) Prettyboy Schist, ¢) East Marburg Fm., d) West Marburg
Fm., €) Sams Creek Fm.
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Thin sections of the formations were studied to determine mineralogical or structural
differences which may indicate a terrane boundary within the Marburg Formation. All samples
exhibit approximately east-west foliation, except for Sams Creek Formation (fig. 12e), whose
foliation is oriented northwest-southeast. Eastern-type formations are similar in mineralogy; all
comprise quartz, muscovite, biotite, plagioclase, and an opaque phase, which is most likely
pyrite. The Prettyboy Schist and Marburg Formation also contain chlorite. Sams Creek
Formation, a western-type formation, consists mostly of quartz and plagioclase, but contains
~10% muscovite and <5% of the opaque phase.
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Figure 12: Photomicrographs of formations sampled: a) Mather Gorge Fm., b) Prettyboy Schist, ¢)
E. Marburg Fm., d) W. Marburg Fm., €) Sams Creek Fm. All taken at 5x (2.7mm field of view), in
plain polarized light. Blue lines indicate approximate orientation of foliation.

Discussion

Observation of thin sections of the formations indicates that there is no mineralogical or
structural boundary within the Marburg Formation. Eastern-type samples exhibit similar
mineralogy, in that they contain a considerable amount of pyrite and micas. The western-type
sample has a relatively small amount of micas and almost no pyrite. When analyzing the U/Pb
data, it was observed that western-type samples had a different detrital zircon age signature that
the eastern-type samples. While eastern-type rocks had a wider range of zircon ages, western-
type rocks only contain zircons of one age, with very few outliers. These observations may
indicate that the Westminster-Potomac terrane boundary is located along the Hyattstown Thrust
Fault, which separates the Sams Creek Formation from the Marburg Formation. This finding
disproves the hypothesis that the Westminster-Potomac terrane boundary is the Parrs Ridge fault,
located within the Marburg Formation. Although not impossible, it seems unlikely that a terrane
boundary would exist within a single formation.

The previously stated observations lead to the following implications about the
Westminster and Potomac terranes. There is no evidence suggesting that the Westminster terrane
is not located on the supercontinent Laurentia in the Neoproterozoic. In what | have classified as
“western-type” formations, including the Sams Creek Formation, as well as the Urbana and
ljamsville Formations from previous studies, there is only one age population between the U/Pb
ages of ~900-1300 Ma in these rocks. This suggests that the formations within the Westminster
terrane had one source, similar to that of the Blue Ridge Anticlinorium, which contains gneissic
rocks with zircons that exhibit U/Pb ages ranging from approximately 570 Ma-2000 Ma (Tollo,
1996; Fullagar, 2002).

There are three possible implications on the position of the Potomac terrane. The first and
most conservative explanation is that the Potomac terrane has not been displaced, and was also
located on Laurentia. The problem with this explanation is that the Potomac and Westminster
terranes do not share sources, seen in the transition from one zircon population to many between
the two terranes, and differences in mineralogy. If this were true, there must have been some
tectonic barrier, such as a basin or mountain range, to separate the rocks of these formations and
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cause such a difference in the behavior of the zircon populations. The tectonic barrier could be a
remnant of the failed rift on Laurentia at approximately 735 Ma (Hatcher, 2007).

The second implication is that the Potomac terrane was located where Newfoundland in
eastern Canada is located today. U/Pb ages expected of rocks from this area are Grenvillian,
ranging from approximately 1000-1300 Ma; there are also rocks associated with rifting
sequences which opened the lapetus Ocean which date ~550-760 Ma (Cawood, 2001).
Formations within the Potomac terrane do exhibit these ages, but do not contain Archean aged
zircons, which would be expected, since Grenvillian rocks have an Archean and
Paleoproterozoic provenance (Gower and Krogh, 2002).

The last explanation is that the Potomac terrane was located on the Western portion of
Gondwana, and was transferred to the Laurentian margin, colliding with the Westminster terrane.
However, the age of the rocks in northwestern Gondwana are not well known, and most agree
that the Potomac terrane was thrust onto the Laurentian margin along with the Westminster
terrane (Hatcher, 2007; Tollo, 2004).

Conclusion

The collision of Carolinia into the southeast region of Laurentia, as well as the collision
of Baltica, Avalonia, and Ganderia to the north caused thrust faulting that eventually formed the
Piedmont Province, a result of the Taconic and Penobscot orogenies. The Westminster-Potomac
terrane boundary represents contacts between Laurentia (to the west) and the peri-Gondwanan
terranes that collided with the continent (to the east). If the Westminster-Potomac terrane
boundary is located within the Marburg Formation, the width of the Potomac terrane would be
extended westward, contrary to studies done before the early 2000s.
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Appendix 1: U/Pb analyses from Aleinikoff et al.,
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Summary of conventional and SHRIMP U-Pb ages of granitic and tonalitic rocks,

Piedmont of Maryland-D.C.-Virginia

sample name zireon previous ID-TIMS SHRIMP

number morphology’ age (Ma)® age (Ma) age (Ma)*

1. SA-F2-11 Guilford Granite el, ew, cl, 370a nd 362+3

fi

2. Oc¢-1-96 monzodiorite, p.eu,el, ~560e 459 + 4 nd
Dale City Quartz Monzonite fi

3. K-E-1-9 tonalite, el, eu, cl, 570+ 501 460+ 3 H9+7
Norbeck [ntrusive Suite fi 554¢

4. WW9000  Kensington p, eu, cr, 550b;, 528c¢; 468 + 8 463+ 8
Tonalite mi S46d (or 46l +4)

5. PR2-69 granite, p,eu, cl, 487-524h 455+ 8 456+ 9
Goldvein pluton fi

6. P82-T71 tonalite, el, eu-su, 472-487h 476+ 3 461 =7
Lake Jackson pluton er, fi

7. ANTODO tonalite, el,eu, cl, 470+ 5 469+ 6
Falls Church Intrusive Suite mi

8, Oc-3-98 Occoquan Granite el, ey, ¢l 558¢; nd 4724
(main batholith) mi, cr 494 + 14g

9. TH1000, Occoquan Granite of el, ey, cl, 482 +3 483+ 9

PR2-74 Bull Run Marina pluton fi, er

10, WW3000 monzogranite, p.eu, el, 478+ 12 478+ 6
Dalecarlia Intrusive Suite fi, eq, er discordant

11, WWaDDD  tonalite, el, eu, cl, 466+ 3 472+ 4
Cieorgetown Intrusive Suite fi

1 Abbreviations: el (elongate), eu (euhedral), cl (clear), fi (few inclusions), p (prismatic), cr
(cracks), mi (many inclusions), eq (equant), su (subhedral). Prismatic (length-to-width ratio
2-4): elongate (length-to-width ratio =6); nd (not determined).

2 References: a Tilton and others (1959), b Dawvis and others (1958), ¢ Wetherill and others
(1966), d Sinha and others (1989), e Seiders and others (1975), f Davis and others (1960), g

Maose and Nagel, {19.)852) . h'T. Stern, unpublished data-Pb/Pb ages.
3 weighted average of *"Ph/**U ages.
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Appendix 2: Relative probability and concordia plots from Kingman, 2009
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Bear Island domain of the Mather Gorge formation
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Laurel formation
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Appendix 3: Relative Probability and concordia plots from Fisher, 2010
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